Copied to
clipboard

G = C62.39D4order 288 = 25·32

23rd non-split extension by C62 of D4 acting via D4/C2=C22

metabelian, supersoluble, monomial

Aliases: C62.39D4, C32:13C4wrC2, (C3xD4):2Dic3, (C3xQ8):4Dic3, (C2xC12).97D6, (D4xC32):7C4, (Q8xC32):7C4, Q8:3(C3:Dic3), D4:2(C3:Dic3), (C3xC12).173D4, C12.58D6:6C2, (C6xC12).64C22, C12.15(C2xDic3), C3:3(Q8:3Dic3), C12.134(C3:D4), C2.8(C62:5C4), C4.31(C32:7D4), C6.28(C6.D4), C22.3(C32:7D4), (C4xC3:Dic3):3C2, C4.3(C2xC3:Dic3), (C3xC12).54(C2xC4), C4oD4.3(C3:S3), (C3xC4oD4).14S3, (C2xC6).15(C3:D4), (C32xC4oD4).2C2, (C3xC6).76(C22:C4), (C2xC4).42(C2xC3:S3), SmallGroup(288,312)

Series: Derived Chief Lower central Upper central

C1C3xC12 — C62.39D4
C1C3C32C3xC6C3xC12C6xC12C12.58D6 — C62.39D4
C32C3xC6C3xC12 — C62.39D4
C1C4C2xC4C4oD4

Generators and relations for C62.39D4
 G = < a,b,c,d | a6=b6=1, c4=b3, d2=a3b3, ab=ba, cac-1=a-1b3, dad-1=a-1, cbc-1=dbd-1=b-1, dcd-1=a3c3 >

Subgroups: 380 in 132 conjugacy classes, 57 normal (21 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C6, C6, C8, C2xC4, C2xC4, D4, D4, Q8, C32, Dic3, C12, C12, C2xC6, C2xC6, C42, M4(2), C4oD4, C3xC6, C3xC6, C3:C8, C2xDic3, C2xC12, C2xC12, C3xD4, C3xD4, C3xQ8, C4wrC2, C3:Dic3, C3xC12, C3xC12, C62, C62, C4.Dic3, C4xDic3, C3xC4oD4, C32:4C8, C2xC3:Dic3, C6xC12, C6xC12, D4xC32, D4xC32, Q8xC32, Q8:3Dic3, C12.58D6, C4xC3:Dic3, C32xC4oD4, C62.39D4
Quotients: C1, C2, C4, C22, S3, C2xC4, D4, Dic3, D6, C22:C4, C3:S3, C2xDic3, C3:D4, C4wrC2, C3:Dic3, C2xC3:S3, C6.D4, C2xC3:Dic3, C32:7D4, Q8:3Dic3, C62:5C4, C62.39D4

Smallest permutation representation of C62.39D4
On 72 points
Generators in S72
(1 65 50 5 69 54)(2 51 70)(3 67 52 7 71 56)(4 53 72)(6 55 66)(8 49 68)(9 36 41 13 40 45)(10 42 33)(11 38 43 15 34 47)(12 44 35)(14 46 37)(16 48 39)(17 32 60)(18 57 25 22 61 29)(19 26 62)(20 59 27 24 63 31)(21 28 64)(23 30 58)
(1 34 25 5 38 29)(2 30 39 6 26 35)(3 36 27 7 40 31)(4 32 33 8 28 37)(9 59 52 13 63 56)(10 49 64 14 53 60)(11 61 54 15 57 50)(12 51 58 16 55 62)(17 42 68 21 46 72)(18 65 47 22 69 43)(19 44 70 23 48 66)(20 67 41 24 71 45)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)
(1 5)(2 8 6 4)(3 7)(9 24)(10 19 14 23)(11 18)(12 21 16 17)(13 20)(15 22)(25 34)(26 37 30 33)(27 36)(28 39 32 35)(29 38)(31 40)(41 59)(42 62 46 58)(43 61)(44 64 48 60)(45 63)(47 57)(49 66 53 70)(50 65)(51 68 55 72)(52 67)(54 69)(56 71)

G:=sub<Sym(72)| (1,65,50,5,69,54)(2,51,70)(3,67,52,7,71,56)(4,53,72)(6,55,66)(8,49,68)(9,36,41,13,40,45)(10,42,33)(11,38,43,15,34,47)(12,44,35)(14,46,37)(16,48,39)(17,32,60)(18,57,25,22,61,29)(19,26,62)(20,59,27,24,63,31)(21,28,64)(23,30,58), (1,34,25,5,38,29)(2,30,39,6,26,35)(3,36,27,7,40,31)(4,32,33,8,28,37)(9,59,52,13,63,56)(10,49,64,14,53,60)(11,61,54,15,57,50)(12,51,58,16,55,62)(17,42,68,21,46,72)(18,65,47,22,69,43)(19,44,70,23,48,66)(20,67,41,24,71,45), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72), (1,5)(2,8,6,4)(3,7)(9,24)(10,19,14,23)(11,18)(12,21,16,17)(13,20)(15,22)(25,34)(26,37,30,33)(27,36)(28,39,32,35)(29,38)(31,40)(41,59)(42,62,46,58)(43,61)(44,64,48,60)(45,63)(47,57)(49,66,53,70)(50,65)(51,68,55,72)(52,67)(54,69)(56,71)>;

G:=Group( (1,65,50,5,69,54)(2,51,70)(3,67,52,7,71,56)(4,53,72)(6,55,66)(8,49,68)(9,36,41,13,40,45)(10,42,33)(11,38,43,15,34,47)(12,44,35)(14,46,37)(16,48,39)(17,32,60)(18,57,25,22,61,29)(19,26,62)(20,59,27,24,63,31)(21,28,64)(23,30,58), (1,34,25,5,38,29)(2,30,39,6,26,35)(3,36,27,7,40,31)(4,32,33,8,28,37)(9,59,52,13,63,56)(10,49,64,14,53,60)(11,61,54,15,57,50)(12,51,58,16,55,62)(17,42,68,21,46,72)(18,65,47,22,69,43)(19,44,70,23,48,66)(20,67,41,24,71,45), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72), (1,5)(2,8,6,4)(3,7)(9,24)(10,19,14,23)(11,18)(12,21,16,17)(13,20)(15,22)(25,34)(26,37,30,33)(27,36)(28,39,32,35)(29,38)(31,40)(41,59)(42,62,46,58)(43,61)(44,64,48,60)(45,63)(47,57)(49,66,53,70)(50,65)(51,68,55,72)(52,67)(54,69)(56,71) );

G=PermutationGroup([[(1,65,50,5,69,54),(2,51,70),(3,67,52,7,71,56),(4,53,72),(6,55,66),(8,49,68),(9,36,41,13,40,45),(10,42,33),(11,38,43,15,34,47),(12,44,35),(14,46,37),(16,48,39),(17,32,60),(18,57,25,22,61,29),(19,26,62),(20,59,27,24,63,31),(21,28,64),(23,30,58)], [(1,34,25,5,38,29),(2,30,39,6,26,35),(3,36,27,7,40,31),(4,32,33,8,28,37),(9,59,52,13,63,56),(10,49,64,14,53,60),(11,61,54,15,57,50),(12,51,58,16,55,62),(17,42,68,21,46,72),(18,65,47,22,69,43),(19,44,70,23,48,66),(20,67,41,24,71,45)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72)], [(1,5),(2,8,6,4),(3,7),(9,24),(10,19,14,23),(11,18),(12,21,16,17),(13,20),(15,22),(25,34),(26,37,30,33),(27,36),(28,39,32,35),(29,38),(31,40),(41,59),(42,62,46,58),(43,61),(44,64,48,60),(45,63),(47,57),(49,66,53,70),(50,65),(51,68,55,72),(52,67),(54,69),(56,71)]])

54 conjugacy classes

class 1 2A2B2C3A3B3C3D4A4B4C4D4E4F4G4H6A6B6C6D6E···6P8A8B12A···12H12I···12T
order122233334444444466666···68812···1212···12
size1124222211241818181822224···436362···24···4

54 irreducible representations

dim1111112222222224
type++++++++--
imageC1C2C2C2C4C4S3D4D4D6Dic3Dic3C3:D4C3:D4C4wrC2Q8:3Dic3
kernelC62.39D4C12.58D6C4xC3:Dic3C32xC4oD4D4xC32Q8xC32C3xC4oD4C3xC12C62C2xC12C3xD4C3xQ8C12C2xC6C32C3
# reps1111224114448848

Matrix representation of C62.39D4 in GL6(F73)

7200000
010000
001000
000100
00007170
000011
,
7200000
0720000
0007200
0017200
000010
000001
,
0270000
7200000
00434300
00133000
00001734
00004356
,
7200000
0270000
0017200
0007200
000010
00007272

G:=sub<GL(6,GF(73))| [72,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,71,1,0,0,0,0,70,1],[72,0,0,0,0,0,0,72,0,0,0,0,0,0,0,1,0,0,0,0,72,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,72,0,0,0,0,27,0,0,0,0,0,0,0,43,13,0,0,0,0,43,30,0,0,0,0,0,0,17,43,0,0,0,0,34,56],[72,0,0,0,0,0,0,27,0,0,0,0,0,0,1,0,0,0,0,0,72,72,0,0,0,0,0,0,1,72,0,0,0,0,0,72] >;

C62.39D4 in GAP, Magma, Sage, TeX

C_6^2._{39}D_4
% in TeX

G:=Group("C6^2.39D4");
// GroupNames label

G:=SmallGroup(288,312);
// by ID

G=gap.SmallGroup(288,312);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,28,141,100,675,346,80,2693,9414]);
// Polycyclic

G:=Group<a,b,c,d|a^6=b^6=1,c^4=b^3,d^2=a^3*b^3,a*b=b*a,c*a*c^-1=a^-1*b^3,d*a*d^-1=a^-1,c*b*c^-1=d*b*d^-1=b^-1,d*c*d^-1=a^3*c^3>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<